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A problem of optimizing the mass of a wing is formulated for a possible permeable wing made up of a 

system of feathers. The basic characteristics of the external shape of the wing are assumed to be 

specified. An approximate solution to the problem is found. Formulae for obtaining the optimum wing 

mass are obtained. 

1. CONCEPTS USED 

A first-order feather is a system of beams, one of which is selected to have all the remaining 
beams cantilevered from it, with the axes of the cantilevered beams lying in a single surface. 
The surface containing the axes of the cantilevered beams is called a first-order feather surface, 
and the selected beam to which the cantilevered beams are attached is the spine of the first- 
order feather. The cantilevered beams themselves are sometimes called zeroth-order feathers 
(degenerate feathers). 

For k = 2,3,. . . a kth order feather is a system consisting of a beam and of (k-1)th order 
feathers, each of which is cantilevered from the beam by means of the spine, so that the 
surfaces of the (k-1)th order feathers coincide. The common surface of the (k- 1)th order 
feathers is called the surface of the kth order feather, and the beam to which the (k-1)th 
order feathers are attached is the spine of the k th order feather. A kth order subfeather is a 
system consisting of a beam and (k - 1)th order feathers cantilevered from it by means of the 
spines so that not all the surfaces of the (k- 1)th order feathers coincide. The spine of a k th 
order feather (or subfeather) is for brevity often called a kth order spine. If 12 is the highest 
order of the feathers (or subfeathers) constituting a wing, then any surface of these feathers (or 
subfeathers) is called the wing surface. 

A feather (or subfeather) is said to be symmetrically loaded if its spine is in a perpen- 
dicularly stressed state [l]. Here we consider spines of annular section. To calculate the 
dimensions of the section we will use the familiar strength condition for a cantilever spine 
under the action of a distributed transverse load, 4MRd(R4 -r4)-l G 6, where M is the 
bending moment acting in a section of the spine, R is the outer radius of the section, r is the 
inner radius of the section, and o is the breaking stress. Using this, the smallest cross-sectional 
area for a given R and A4 is described by the function 

F(R,M) = ltR2(1 -J/-) when mR3 84M 
(1.1) 

00 - otherwise 
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2. IjOKMULATION OF THE PROBLEM 

In order to describe the shape of the wing in plan we will introduce a skewed Carlesian 
system of coordinates X. y with an angle q0 between the .r and y axes, assuming that 0 < (P,, z: n. 
Suppose that this shape is a parallelogram bounded by the coordinate lines .r = 0, .Y = h, 
y = 0, y = I, where b-and 1 are given positive numbers. The wing is attached at lhc y = 0 side. 
We will consider two cases of wing construction: (I) with a single surface common to the rzth 
order feathers, and (2) with two surfaces common to rzth order subfeathers (n is variable}. 
Wing sections for the first and second cases are shown in Figs l(a) and l(b). 

We will formulate the problem for the first case, taking the wing surface to be the z = 0 plane 
(the z axis being perpendicular to the x and y axes), and then point out the properties of the 
second case. 

The plan shape of the wing when YZ = 1 is shown in Fig. 2. We shall assume that the pressure 
drop through the surface of the wing at any point (x, y. 0) on this surface is given by the 
product pl(n)yz(y) for .r E [0, h], YE (0, 11, where y, and y> are known continuous functions, 
positive inside the specified intervals. We shall later show how the force of gravity can be taken 
into account, but for the time being we shall assume that it can be neglected. 

Taking the projection of a wing (or a feather) to be its projection onto the z = 0 plane, we 
shall consider versions of wings in the form of collections of nth order feathers which satisfy 
the following restrictions: (a) the wing projection decomposes into projections of 12th order 
feathers with the help of the lines x = const. (b) the axis of the spine of a k th order feather 
(k=n, II-l,..., 0) is an interval of the line s = const when (r~ - k) is even and of the line 
y = const otherwise, the position of the axis being chosen so that the feather is symmetrically 
loaded, (c) the spine axis of a kth order feather (k = IZ, IZ - 1, . . , 1) divides the projection of 
this feather into subprojections which decompose into the projections of (k -1)th order 
feathers with the help of the lines .r = const when (n-k) is odd, and y = const otherwise, where 
the decomposition of a subprojection when k > 1 is performed so that the spines of the 
(k - 1)th order feathers have identical loads, (d) the external radius of the section of an rlth 
order spine at any point (x, y) on the axis is given by a specified function f(y) (y E [O. I]), which 

Fig. 1 

Fig. 2. 
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is concave, positive and decreasing, (e) the external radius of the section of a kth order spine, 
where 0 G k s tt - 1, is bounded by the values ffr) when 1 s k G y1- 1, and 6 when k = 0, where 
the parameter 6 is imposed by quality requ~ements on the surface, 6 G f(l). 

We introduce the fundamental variables. First, we introduce the variable m, which is the 
number of nth order feathers in the wing, and relate it to the mass of the nth order spines. 

By hypothesis, the projection of the wing decomposes into the projections of nth order 
feathers with the help of the lines 

x = xi, (ml, i, = f,...,m+i (2-l) 

where the parameters are found from the condition of equa1 spine loading 

where x,(m) = 0. The i,th and (iI + 1)th pair of adjacent lines from (2.1) together with the y = 0 
and y = 1 lines bound the projection of the iI th feather of nth order. The spine axis of this 
feather is the section of the line x =xf(m), bounded by the lines y = 0 and y = I, where 
x = $((m), is found from the condition for symmetrical loading of the feather 

Jif Mf =%E+iim) 

J ~1 <x>tx; cm> - xl& = J ~1 (x)Ix - ~;(a~ (2.3) 
Xi1 Cm) .$(m) 

The spine is secured in the section where y = 0, so that in the section appropriate to some 
point (x,((m), y) of the axis there is obviously a bending moment 

~~+l(mf 
Mi\(m,y)=sin~o x’ I,~,(x)drjp,(j)(~-y)~ 

1 Y 

The smallest cross-sectional area corresponding to this moment is F[f(y), M,(m, y)], where 
F is a function of the form (1.1). Taking this into account, we conclude that the spine of the i,th 
feather of nth order is of mass 

where p is the density of the wing material. We shall impose a restriction on the variable m 
with respect to the ratio of the spine radius and the size of the feather projection 

sincpolx,F(m)- x~+i(m)l>wf(0), i, =l t..., m; j=O,l 

where the number w is assumed to be specified so that w 2 1. 
We have thus introduced the variable m and related it to the mass of the spines of the nth 

order feathers. Then, for iI = 1, , . . , m we introduce a variable m,,, which is the number of 
pairs of (n-1)th order feathers constituting the nth order feather with number iI. We relate 
the variables yi, to the mass of the (u-1)th order spines. 

The spine axis of the 4th feature of nth order decomposes the projection of this feather into 
two subprojections, which are numbered by the index h. The value j, = 0 corresponds to the 
subprojection at whose points .X ~x@z), while the value & = 1 corresponds to the other 
subprojection. By hypothesis, each of the subprojections is divided up by the lines 

y=Yi,(mi), i2 =l,.,.,mii +I (2.4) 

into projections of (n-1)th order feathers, the lines satisfying the conditions of equal spine 
loading 
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Yiz+l(mil) 

I P*wY=-+YvY~ i, =l ,...v mi, 
YQ (9, ) ‘I 

with y,(q) = 0. Thus any adjacent i,th and (i2 + 1)th lines from (2.4), together with the lines 

X=Xq+jl(m), x=xif(m> (2.5) 

bound the projection of the (YL- 1)th order feather with number (iI. i,. jIj.The spine axis oi 
this feather is the section of the line y = y,:(q) enclosed by the lines (2.5) where the parameter 
of the axis is found from the condition for symmetric loading of the feather 

Y&hi, ) Yi2+k(mh 1 

j P*(Y)[Y~(mi,)-YldY= I P*(YNY-YG(mil)MY 
Yi2 (“i, ) Y&N,) 

We shall provisionally assume that the spine is attached in the section where .r = .~;(m), so 
that in a section corresponding to some point (x, yi(m,,)) of the axis there is a bending 
moment 

Taking the outer radius of the section to have the largest admissible value I‘(r) (minimizing 
the area of the section), we express the mass of the spine numbered (i,, iz. j,) in the form 

The variable q is restricted by the sizes of the feather projection and spine radius 

Sin~~lY~(mi,)-Yi+j(mi,)I~f(f), r;? =l,..., mi,; j=O,l 

Thus for feathers of order k = II - 1 we have introduced variables m,, (i, = 1. . . . m) which we 
have related to the mass of the spines of those feathers. We perform a similar formalization for 
feathers of order k = II - 2, . . ) 1. In particular, if we have performed the formalization for 
k = 11 - s. where 1 s s < IZ - 1, then for k = II - s - 1 we proceed as follows. 

We introduce the variable m$“l,, which is the number of pairs of (IZ - s - 1)th order feathers 
in the (n-s)th order feather with number (i(s+l), j(s)). Here and below the index j(s) 
denotes the set of indices j,, . . . j,, and the index i(s) denotes the set of indices i,. . . is. In 
the newly-introduced variable the indices take the following values 

i, = l,...,m; j(s-1). i2 = i,..., mi, ; . . . ; is+, = l,..., mi(S) , j, =O,l; . . . . i, =O,l 

To simplify the formalism we introduce the following notation 

CL&%) = 

(m ,/w 

(my 
r~2~,...,m,$~I~ with odd 

‘I ’ 
,jt2, i(s) rc3j ,...,mi(s+l) with ‘ven 

Two cases are possible: (1) s odd, and (2) s even. We shall only consider the first case. 
because the formulae for the second case are similar, the main difference being that the x and y 
coordinates and the functions p,(x) and /jZ(x) are interchanged. The spine axis of the feather 
numbered (i(s+l), j(s)). where s is odd, decomposes the projection of this feather into two 
subprojections which we number with the index jS+,. jS+, = 0 corresponds to the subprojection 

at whose points y s y;+, (p,,,, ‘(‘-‘)), and j,7d, = 1 to the other subprojection. By assumption, each of 
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the subprojections is divided into projections of (n- s-1)th order feathers by the lines 

x=x. ($&) ‘s+Z ’ s ’ i s+2 = 1 ,...J+$) + 1 

satisfying the conditions for equal loading of the spines 

where 

A pair of adjacent lines from (2.6) numbered is+* and (is+* +l), together with the lines 

(2.6) 

(2.7) 

bound the projection of the (11 - s - 1) th order feather numbered (i(s + 2), j(s + 1)). The spine 
axis of this feather is the section of the line x = x,~~+~@$,), enclosed by the lines (2.7), and we 
find the axis parameter from the condition for symmetric loading of the feather 

In the section corresponding to any point (x= x,~,,,(@&), y) of the spine axis there is a 
bending moment 

Taking the outer radius of the section as the largest permissible value f(l), we write down the 
mass of the spine for the feather numbered (i(s+ 2), j(s+l)) 

&“+I’ &+2) (m.mg,....mil:ss!,)) = 
Y!+, (P&y’) 

=(-@+lp ’ j 

) 

F[f(l).M,~~~~:(m,mi,,..,m~~~~l,;Y)ldy (2.9) 

%+I+&+1 N(s) /(r-l)) 

The variable m$$ should satisfy the restriction 

sin 901 xt+2 (cL!$L) )-xis+2+y(P{$~,))1B f(l) (2.10) 

l,3+2 = 1 j(s) V.**rrni(s+l); y=O,l 

We have thus performed the formalization for feathers of order k =rz - s -1, when s <n -1. 
For s = IZ -1, i.e. for feathers of order k = 0, the formalization is similar to that described, 
although there are differences. We will indicate these differences (for the case of odd S) as 
follows. 

1. The parameters of the lines (2.6) are determined from the condition for the external spine 
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diameters to be equal, i.e. from the condition 

is the outer radius of the spine. 
2. The spine axis parameter s~~~,Jp$,) is the average of the parameters .~,~,,+,(p:j:&,). y = 0, 1. 
3. In (2.9) f(f) is replaced by +$,,). 
4. Instead of restriction (2.10) the surface quality restriction Y(~~&)G F is used. We will 

finish the formalization by writing out the efficiency criterion 

It is 
mJ’“-” 

required to minimize this criteria with respect to the variables 12, m, mS,. mt$, ‘ 

ICI) 
under the given conditions. 

3. SOLUTION OF THE PROBLEM 

Suppose II > 2. We shall first show that in order to reduce the value of the efficiency criterion 
it is desirable to increase the value of each variable rn,‘~.~,~‘. describing the number of first-order 
feathers in the second-order feather numbered (i(~ - 1). j(/z - 2)). To do this we shall prove 
two assertions. The first shows that when m,(,, ,) ‘P-Z increases, the total mass of the first-order 
feather spines decreases in the second-order feather numbered (i(rz - 1). j(rz - 2)). It follows 
from the second assertion that when the same variable is increased v times ( v = 2. 3, . .) there 
is a reduction in the total mass of the zeroth-order spines entering into the same second-order 
feather. 

Assertion 1. Suppose there arc two sets of symmetrically loaded feathers: IYlp (i = 1. . . . , v,,) 
and IIt (i = 1. . . . , v,) and that for each feather K~:(K = 0. I: i = I, . . . , v,) the spine axis is the 
section of the line 4 = 5: enclosed between the lines TJ = 0 and q = a in the Cartesian system of 
coordinates O&, n > 0. Suppose that the spine section through some point (5:) q) of the axis 
has an outer radius R(q) > 0 (11 E [0, a]), and that in this section there is a bending moment 
M;(q) the internal radius of the section being chosen so that the area of the section is the 
smallest one preserving the rigidity of the spine. 

We introduce the notation 

Suppose, further, that the functions h!(11) and M”(?J)(TJ E [O, a]) are continuous, and that 

MT(?j)>O, qE[O,a], K=O,l; i=l,..., V, (3.1) 

cb<m = cl (q1), Jl E [O, al (3.2) 

M”(q)=MT(q), q~[O,a], K=O,l; i,j=l,..., V, (3.3) 

Then, if v, c v,, the total mass of the spines of the Fly (i = 1, . . . , vo) feathers is greater than 
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the total mass of the spines of the IIt (i = 1, . . . , v,) feathers. 

Proof. From the conditions of the assertion, the area of the spine sections for each feather I-IF (K = 0, 1; 

i=l, . ..) vK) is described by the continuous function 

F[R(n),M~(n)l = n[R(n)l*[l-41 - Mix(n) n E [O.al 

a(n) = 4(ms~-‘[R(q)l-’ 7 0 

where the expression under the root is non-negative. The volume of the spine of the II: feather is equal 

to the integral of F[R(rl), Mj!(n)] over the interval [0, a]. In order to prove the assertion it is therefore 

sufficient to show that 

Expanding the function Fin series, we can write this inequality in the form 

(3.4) 

We use the fact that when V, c V, the relation 

%(l)>%l), q~[O,a), s=2,3... 

is satisfied by virtue of conditions (3.1)-(3.3). 

The validity of (3.4) then follows from the series comparison theorem. 

Remark. If we have v0 = 1 in the formulation of Assertion 1 (one feather being replaced by v, 
feathers), then the assertion still holds without conditions (3.3). 

Assertion 2. Suppose we have a pair of spines C,’ (i = 1, . . . , 2v,) and v, pairs of spines C,l 
(i=l, . . . . 2v,), where v, = 1 c v, (Fig. 3), where the axis of any spine C: (K = 0, 1; i = 1, . . . , 
2v,), is described by a section [t,tl, &F] of the 5 coordinate axis such that 

50” < 5: < ...<c;v, (K=o,l), s”,=& {; =k:,, (3.5) 

Fig. 3. 
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Furthermore, we will specify a continuous function q(5), 4 E [ki, ci] whose restriction to any 
interval [&:l, c:] gives the distribution of the transverse load acting on the spine C,“, and 
q(e) > 0 when cz < 5 < &$. Suppose that the spines Cif_, and CT*, where 1 G s < v, . are fixed in a 
neighbourhood of the points & _, . and that in sections of the spine near this point the bending 
moments are equal 

Finally, let the outer radius of the section of each spine be H > 0, and the inner radius be 
chosen so that the cross-sectional area is the smallest consistent with the structural integrity of 
the spine. Then the mass of the pair of spines Co (i = 1, 2) is greater than the total mass of the 
v, pairs of spines Co (i = 1, , . . , 2vJ. 

Proof. The bending moments acting in different sections of the spine c;$_~+, (K = 0, 1: s = 1. 
vK; j = 0. I), are described by a function 

that is continuous and monotonic (using the properties of ‘I). In addition, from the conditions of the 

assertion the relations 

M,C({F) = Mi’,,(~~) (K = 0.1; i = 1,....2V, -1) (3.7) 

hold. 
Hence for K = 0, 1 one can construct the continuous function 

(3.8) 

and express the volume of each set of spines C: (i = 1. . . . . 2v,) as an integral of the function 

F(R,M’(~))=nRZ[l- 1-4MYS)(noWl, gErG$zl 

where the expression under the square root sign is non-negative. Since the function F’(R, M”(t)) 

increases with M”(5)) then, from the properties of the integral, to complete the proof it is sufficient to 

justify the inequality M’(c) 3 M’(c) when 5 E [5:, (“,I, and in addition, to show that this inequality is 

strict on some interval [y, c”] where ci s 5’~ 5” s ci. To this end we take any s E (1. . v,) and 

consider the relation between M’(5) and M’(k) in the interval [k&_,,. ci,]. 
Two cases are possible: (1) c:,_, <kF and (2) $,_, 3 6;. The arguments are similar in the two cases. so 

we shall only consider the first. In that case, using (3.g), (3.6), (3.5) and the properties of 4, we have 

We consider the relation between M”(c) and M’(j) in the interval (k\,_,, E,:,]. The possible situations 

are: (a) c:, >cy and (b) kiS ~kf. We shall only consider the first of these, the proof for the second case 

being similar. In cast (a). assuming that c\, = 59. we obtain the relation 

contradicting (3.7). Hence 65, <&“, and like (3.9) we have 
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Moreover, using (3.6)-(3.9), we obtain 

The assertion is proved. 

It follows from Assertions 1 and 2 that it is desirable to assign the smallest value allowed by 
restrictions (2.10) to the variable m$‘$‘, i.e. to take 

j(n-2) 
mi(n-l) 

-j(n-2) j(n-4) 
= T(n-I) (Pi(n-3) ) (3.10) 

(i, =I ,..., m;...;i,_l =l,..., PPli$z;)); j, =0,1;...;jn_2 =031> 

since this will minimize (for the specified variable) the total mass of the first-order spines, and 
moreover, this turns out to be close to the smallest total mass of the zeroth-order spines, and at 
the same time preserves the non-varying mass of the spines of order 2, . . . , n. From the same 
assertions it also follows that it is desirable to assign to the variables 

j@-3) 
qn-2) (i, =l,..., m;...;in_2 =l,..,, mil;(,n_;4,); j, =O,l;...;j,_3 =O,l) 

the largest possible values compatible with conditions (3.10). Here we will achieve the 
minimum total mass of the second order spines (with respect to the indicated variables), it is 
close to the minimum total mass for the first-order and second-order spines, and the masses of 
spines of orders 3, . . . , n are unchanged. The length of each first-order spine is near to the 
value f(r) of the outer radius of a second-order spine. In this case such degenerate first-order 
spines can be eliminated from the make-up of the wing without significant loss of mass, i.e. IZ 
can be reduced by 1. 

Continuing the argument, we conclude that to minimize the efficiency criterion it is desirable 
totake n=2, m=Z, RI~,=~~] (iI=& . . . . m), where the largest allowed value of the variable 
is noted. The smallest possible value of rnt, which maximizes the outer radius of the 
zeroth-order spine section and minimizes its mass, is assigned each variable rn$ (i, = 1, . . . , 
m; iZ=l, . . . . m,,; jl = 0, l), giving the number of zeroth-order spine pairs in the first-order 
feather with number (i,, i,, jI).The possible error in the minimum efficiency criterion when 
these values are used is smaller than the total mass of the zeroth-order and first-order spines. 

We shall estimate the total mass of the spines for each order k=O, 1, 2. We first obtain an 
estimate for k = 0, taking s = 1 in expressions (2.8) and (2.9) and replacing f(l) by ~(u$i) in 
(2.9). We take into account that the bigger the variables m, m,,, m,$, the closer the limits of 
integration in each integral of formulae (2.8) and the smaller the moment (2.8). We assume 
that this moment is sufficiently small that one can neglect the error caused by replacing the 
function F with the first term of its series expansion in (2.9). Then 

where 

p = 2psi119o ! CJ, AY$ (mi, > =(-l)‘[$(m~ )-Yi2+j2(mi, )I 

and the number yc, which ensures that the equality is satisfied, lies between y,+,,(m,,) and 
y;(m,), by the mean value theorem. We introduce the following notation 
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Using this notation and the definition of the integral, we obtain 

PC (Cl-O > xif Cm) 

6 sr,(cll> -” (-1)” 
11. 1 

,,,i( ~(~)~i~,~~2(Y~)AY~(mi,)=P'~~(~o)'[3~~(111)l 
m 

where 

P=sincpo~p,(x)drjp,(Y)dy 
0 0 

is the lifting force. Let I, be the value of I&“) when m,, = Zi,,(i, = 1. . . . , E), and let I;, be the 
value of y,(u*) when 

j(l) 
%2) 

= m!l (i, = I,.. 
'I ., z. , i z=l,..., q,; j, =O,l). 

We then have the estimate 

pP1,2 I (3oro > (,?I.1 1 f 

for the total mass of the zeroth-order spines (for the chosen values of the variables). We 
similarly obtain the estimate 

PJq ~[3ofWI (3.12) 

for the total mass of the first-order spines, where 1, is the longest length of the first-order 
spines. Finally, we can similarly derive an estimate for the total mass of the second-order 
spines 

where the numbers y; and y: are taken in the interval [O. /J so that 

Introducing a number h, such that 

P2(Y;P = &2cr,dy 
0 

we can rewrite (3.13) in the form 

c* = pPh,? / [3of(y; )I 

(3.13) 

(3.14) 
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The original parameters are usually such that the sequence of estimates (3.14), (3.12) and 
(3.11) decreases rapidly. Because r, = 6, one can take p1= 1, when 6 is close to f(1), i.e. construct 
the wing as a collection of first-order feathers without losing a significant amount of mass. 

The case of a wing with a single surface was considered without taking gravity into account. 
If gravity has to be taken into account, this can be done with several iterations of the method of 
successive approximations. Every vth iteration (v = 1. 2, . . .) consists of solving the problem in 
which pZ(y) is replaced by &‘(y)=p,(y)-g,_,(y), and obtaining the weight distribution 
function over the wing surface in the form 

where go(y) E 0, and according to (3.11)-(3.13) 

PLZ j,z 1: g”tY)=~ I_+--- 
[( ) 0 ff0 

p:Y’(Y)+_L~ fV) - - f(y) II% (YXY -YH 
Y I 

where g is the acceleration due to gravity. 

4. A WING WITH TW 0 SURFACES 

We shall describe the main features for a wing constructed from two surfaces. Because the 
upper and lower wing surfaces are usually similar in shape to the plane z = cons& instead of the 
wing surfaces we shall consider the planes z =h and z = -h, where 0~ h c f(f). We shall 
assume that the pressure drop when passing through the upper wing surface at any point (x, y, 
to) of that surface is the same as in passing through the plane z = h at the point (x, y, h), and 
is described by the product p,“(.u)pi(y), where x E[O, b], ye [0, I]; the pressure drop when 
passing through the lower wing surface at the point (x, y, z’) is the same as in passing through 
the plane z = -h at the point (x, y, -/I) and is equal to &x)&y). Here yf, p,“, pi and pi are 
known continuous functions and positive inside their intervals of definition, Suppose that the 
functions p,” and p: or &’ and p; are linearly dependent, so that 

where pi(x) and p,(y) are non-negative functions XE [0, b], YE [0, l]. We will call the 
projection onto the plane z = iz (and similarly z = -k) the upper (and similarly the lower) wing 
(or subfeather) projection. 

Using the preceding formalization, one can introduce variables describing various repre- 
sentations of the wing in the form of collections of nth order subfeathers. First of all one can 
introduce a variable m giving the number of nth order subfeathers, assuming that the upper 
(lower) wing projection decomposes into upper (lower) subfeather projections onto the planes 
(2.1) satisfying condition (2.2) for equal loading. The upper (lower) projection for any i1 th 
subfeather (il = 1, . . . , m) divides into two subprojections with numbers j1 = 0, 1 of the lines of 
intersection with the I = x,:(m) plane, in which the spine axis of the subfeather lies and which 
satisfies condition (2.3) for symmetric loading. Then, as in the earlier formalization, one can 
introduce variables “m,, , “m$,’ etc. (i, = 1: . . . , m; i2 = 1, . . . , Ornil; j, = 0, l), describing the 
decomposition of the j,th subprojection of the upper projection of the i,th subfeather into 
projections of feathers of order k <n, having first replaced p,(x) by p,“(x) and p*(y) by pi(y), 
One can similarly introduce variables ‘mi,, ‘m$,’ etc. (i, = 1, . . . , m; i, = 1, . . . , *m,,; j, = 0, l), 
describing the decomposition of the j,th subprojection of the lower projection of the il th 
subfeather into projections of feathers of order k c ~1, replacing p,(x) by p:(x) and p,(y) by 
Y;(Y)* 

Using the previously proved Assertions 1 and 2, we can verify that to minimize the wing 
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mass one should take IZ = 2, assign the largest possible values to the variables m, “m , i vz, 
(il = 1, . . . ) m) and the lowest possible values to the variables ‘rni$( (i2 = 1, . . . . “m,,: j, ‘L 0. 1.j 
and ‘m,$ (&=I . . . , ‘m,i: jl =O, 1). Ob t v~ously, for these variable values the lot.al mass of the 
kth order spines has the previous estimate: (3.14) for k = 2. (3.12) for k = 1. and (3.11) fair 
k = 0. In particular, for the k = I this follows because estimate (3.12) depends linearly on ihc 
lifting force P. Thus the mass of a wing with two surfaces has the same estimate as the mass of 
a wing with a single surface. 

-5. CON(‘I,I!l>ING RliMAKKS 

The results of this paper agree with the general rule of the construction of a bird’s wing. WC 
note two such rules: (1) the low order of feathers out of which the wing is constructed. and (2) 
the small width of the feathers and, consequently. their large number. These rules appear in the 
construction of wings for different purposes: (I) “gliding” wings, intended to obtain lift 
without simultaneously developing thrust. and (2) “flapping” wings, intended to develop both 
lift and thrust. To judge from the shape of a bird’s tail, one can construct a “gliding wing” with 
a small aspect ratio and, consequently, low mass. 

We shall give an example of a mass estimate for the wing of an aircraft. Suppose the take-oft mas, 13 

G, = 150 kg, the analytical load factor coefficient 11~ = 5, IQ(~) = consl, the fuselage width h, = 0.7 m. and 

the wing parameters are as follows: cpO = 7~12. h = 1.2 m. I= 1.8 m. f(,v)=lO-‘(4-3.9~//) (m). s=/“(i). 

Suppose the wing material is the alloy B95T for which cr = 6.08 x lo* N/m’ and p = 2.85 x 10’ kg/m’. 
The analytic load factor on each wing is estimated from the formula P = 11,G,gi2. where wt’ take 

g = 9.81 m/sec”.Then, using (3.13), we find the dominant component of the mass of the wing 

If we take p,(~)=const and IL?= 2. 5. the additional component (3.12) gives 0.06 kg. ‘fhe mass of the 

wings therefore constitutes about 1% of the take-off mass, with an aspect ratio of h = (?I t h,,)/b = 3.6. 

while the relative thickness is c0 = 2f(O)/h = 0.067. 

If in this example we take b = 0.85 m and I = 2.6 m. retaining the values of the other paramctc~ s and the; 

wing area, we obtain G* = 1.46 kg, so that the mass of the wing is about 2% of the take-off mass. J. :.‘_ .+nd 

c0 = 0.094. For comparison, we note that for well-known light aircraft with similar ,I(,, h and c ,,, the wing 
mass constitutes about 10% of the take-off mass [2]. 

The difference in wing mass between the traditional construction and that proposed here can 
be explained by the fact that a normal wing is constructed as a single cantilevered plate or as a 
shell with a framework [3]. The way the moments change from section to section of a single 
cantilever is usually substantially different from that for a construction composed of adjacent 
elementary cantilevers under the same load. This. in particular. leads to a mass saving if a wing 
constructed from a single (say, first-order) feather is replaced by a wing of several narrower 
feathers of the same order with the same external geometrical spine characteristics and 
preserving the plan shape of the wing. 

A practical implementation of a wing of the proposed construction, in which all spines have annular 

sections, is difficult. However, the difficulties can be reduced if the leading order spines arc made with the 

same closed annular section. and the remaining spines with open sections. For example. a wing can bc 

constructed from feathers (or subfcathers) of second order, where spines of order- k< 2 have :I 

rectangular section with height that varies along the spine axis, and bounded by the values .f(/) for k = I. 6 

for k = 0. For cross-sections of this shape one can justify assertions similar to those pt-oved and arrive at 

analogous conclusions about wing construction. In practice a I’eathcr (or subfcather) can 1~~’ cons~ructcti 

by joining several sections, each of which reproduces the part of the feather (or suhleathcrj between twl: 
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transverse spine cross-sections. These sections can be produced by preparing a tube of variable cross- 

section with attached plates and then working each plate to obtain the required spines. 

A wing with a traditional external shape can be constructed in the form of a row of adjacent 

subfeathers (see Fig. lb) each of which is cantilevered to the fuselage. The subfeather includes within 

itself a spine of annular section. with external radius varying along the spine axis in the same way as the 
half-thickness of the wing varies with respect to span, and with first- or zeroth-order feathers cantilevered 

to this spine, these feathers being obtained, for example, by machining plates attached to the spine. The 
first- or zeroth-order feathers attached to the spine of the subfeather together produce part of the upper 
and lower surfaces of the wing and form its profile. 

In order to minimize the wing mass the number of feathers (or subfeathers) attached to the fuselage is 

best chosen to be large, because the width of each feather (or subfeather) and the load on it should be 

small. The position of the (sub)feather spine axis is chosen according to the symmetric load condition to 

be such that there are no twisting moments in the spine. Hence, when there is a random variation in the 
aerodynamic load on the wing, the (sub)feather spine should not perform bending-twisting oscillations 
which can occur in a traditionally constructed wing and lead to its destruction [3]. Purely bending 

(sub)feather oscillations, which are possible under rapid random changes in the aerodynamic load, are 

damped because of the change in the lifting force which occurs because of the displacement of the 
construction elements when acted upon by elastic forces. 

We add that according to the formal description the projection parameters of the (sub)feathers 

attached to the fuselage are chosen so as to ensure the same loading of the spines of those (sub)feathers, 
with the exterior radius of the section of each spine changing, by assumption, according to the same 
functionf(y). This ensures the same bending of the spines, taking into account that the inner radius of the 
spine section is chosen according to the strength condition. This ensures the preservation of the wing 
profile under bending. 

If the formation of the wing profile requires one to use subfeathers whose outer spine radii vary along 

their axes according to different laws, then ensuring the same bending for the spines can require some 

excess in the mass of the wing. The smallest mass of such a wing, considering typical external profile 

shapes and load distributions, usually differs from the smallest wing mass when the external spine radii 

vary according to the same law in all the subfeathers, by no more than a factor of 1.5, for similar h, c,,, 1 

and P. 
We note that the value of the parameter IY, which sets a lower limit to the ratio of the width of the 

highest-order (sub)feather to the diameter of its largest external spine section, should be chosen 
considering not only the mass, but also some other efficiency characteristics. In particular, w can be 

selected by considering as well as the mass. the possibility of controlling the aircraft motion by changing 
the plan shape of the wing by rotating the (sub)feathers about parallel axes. It is desirable to perform this 

control in both wings in such a way that adjacent highest-order (sub)feathers partially overlap with partial 
superposition of the elements forming the wing profile, the control mechanism ensuring that (1) the wing 
area. and therefore the lifting force, vary so as to control the rolling moment, and (2) the point of 
application of the lifting force varies along the fuselage axis so as to control the pitching moment. 

Note that when the proposed wing is used the undercarriage should be attached to the fuselage. 
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